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A Quick and Efficient Method for Determining the
Scattering Matrix of Lossless Microwave Circuits

Georges Roussy, Member, IEEE,and Benoît Willmann

Abstract—The measurements of scattering coefficients of an
-port lossless circuit with a VNA may be tedious because the

experimental results may be incompatible with each other and
do not verify the conditions which relate the coefficients of the
unitary matrix. In this letter, we show that it is efficient to fuse the
data by calculating, in one step, the unitary part of the primary
experimental scattering matrix.

Index Terms—Coherency scattering coefficients, fusion of VNA
data, measurements of scattering coefficients, VNA calibration er-
rors.

I. INTRODUCTION

T HE first step in studying microwaveport circuits is gen-
erally determining the scattering matrix (1). The measure-

ments of scattering coefficients are performed by connecting a
network analyzer to any portsand and loading the other ports
with adapted load circuits. The measurements are done again
successively with all pairs of differentand ports. Each ex-
periment gives three complex scattering coefficients.

The construction of the [] matrix by collecting the data is
sometimes tedious and may pose problems. There are errors
in measurement, mainly due to the inaccuracy in the calibra-
tion procedure. Some measured values may be incoherent with
others because the adapted load circuits which are used are not
perfect and thus have small reflexion coefficients. Difficulties
may arise specially for lossless circuits, such as those used at
high power levels in industrial techniques (2). The experimental
data may be incompatible with each other since the matrix [],
which should be symmetric and unitary when the circuit studied
is lossless, does not verify unitary equations. A matrix [] is uni-
tary when its product with its transposed complex conjugate ma-
trix [ ] yields the identity matrix. Generally, the conditions of
unitarity reduce the number of independent algebraic unknowns
(from the complex coefficients ) by a factor of two.

II. PROCESSINGMETHOD

The fusion of data may be done by applying a least squares
method to determine the unknown coefficients. This is never-
theless tedious, because it leads to optimizing by a least squares
procedure algebraic parameters. In the following
note, we propose to check the unitary conditions of the matrix
[ ] by calculating a unitary matrix [], which is numerically
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near [ ], in one step. The method uses the theorem we recall
in the appendix (3). The product is a ma-
trix which is approximately the identity matrix. For the low loss

port, it would be exactly [] if the measurements were per-
fect. Its eigenvalues ( ) are close to 1. Let [ ] and [ ] be the
matrices constructed with the eigenvectors which diagonalize

.

The diagonal matrices [ ], and [ ] are also
approximately the identity matrices and

is unitary as the theorem in the appendix states.
The matrix appears to be a

factor which corrects [] so it becomes unitary. In cases when
measurement anomalies due to defects such as a misalignment,
misconnection of waveguide, or a local resonance exist, [] cor-
rects the experimental determination of the circuit scattering
matrix. It is a better correction than a conventional least squares
optimization, the use of which is not justified when the errors,
to be smoothed, have no statistical distribution. The optimiza-
tion procedure never gives an exact unitary result and spreads
the anomaly errors over all terms of the matrix.

Since the matrix [ ], is rigorously unitary, it is worth calcu-
lating the impedance and the admittance matrices by using the
well known formulae (4). Their coefficients are purely imagi-
nary numbers. It is possible, then, to check the coherency with
direct measurement of some of them, when measurements are
done with a short circuit, or an open circuit, loading some ports.

As illustrative examples, let us consider two cases.

a) With a HP 8719C vector network analyzer, we obtained
for a thin, metallic obstacle in a WR340 waveguide, at
2450 MHz ; ;

and .
differs from and . The [ ] ma-

trix is not symmetric and not unitary. The calculation
of [ ] gives and

. The data are now coherent
within 3 mU in modulus and 2 in phase. Although
this example is trivial, because the unitary conditions
could be satisfied with hand calculation, it shows the
potentiality of doing the verification automatically.

b) We measured the [] matrix of a home made tee:
; ;

; ; ;
; ;

; not measured and
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. The unitary conditions are not
fulfilled, although the trace of [] is . The
largest coefficient of is 0,3 in modulus. The
first calculation of [ ] detects an error in phase mea-
surement of and . The second calculation of []
yields: , ,

, ,
, ,

, , ,
, ,

,
.

The directivity (for the non-adapted tee) is estimated to
be 11 db and the symmetry between branches three
and four is within 3 . The trace of is

now 4,0001 and the sum of the moduli of all
coefficients is 4,003. A factor of 10 improvement in []
determination accuracy is obtained (after adaptation of
the hybrid tee, so its directivity is reduced to41 db.)

III. CONCLUSION

The use of the decomposition theorem of any non singular
matrix into two hermitian and unitary matrices simplifies the
fusion of data in scattering matrix determination of a no loss
circuit.

APPENDIX

Any non singular matrix [ ] can be decomposed (3) into the
product of a hermitian matrix by an unitary matrix.

The eigenvalues and the eigenvectors of the matrix

are first calculated so that

then

and
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